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Abstract. We investigated the motion of many non-interacting particles with inertia in a 
viscous medium subject to an external, random force field that vaned both in space and 
time. By varying parameters in the problem, it was found that there is a transition between 
two regimes. One regime, characterised by low mass or high viscosity, leads to the 
aggregation of particles. The other regime, high mass or low friction, leads to a complete 
lack of aggregation. The transition between these two regimes is marked by a discontinuous 
change in the order parameters defined for this problem. The relation between this work 
and previous work on iterated functions is discussed. 

1. Introduction 

The problem of particles in a random environment has recently received much attention 
(Marinari et a1 1983, Derrida and Pomeau 1982). The equation studied has been of 
the form 

,t = A x )  + 5 ( t )  (1) 
with f ( x )  and 5( t )  random functions with zero mean and short-range correlations. It 
was recently shown that in one dimension x has extremely slow motion and that the 
power spectrum exhibits l/f noise (Marinari er a1 1983). 

A related problem which has received less attention is that of particles in a random 
environment which is a function of position and time. Here we investigate this problem 
and find some surprising results. The equation we are considering is 

mx+ vx = f ( x ,  t )  (2) 

( f ( x ’ ,  t ’ ) f ( x ,  t ) ) = g ( x ’ - x ) 6 ( t ’ -  t )  (3) 

where f ( x ,  t )  is a random force with a mean of zero and 

where g ( x )  is a rapidly decaying function which has a parabolic maximum at x = 0. 
This represents a particle with inertia in a viscous medium under the influence of a 
randomly fluctuating force that is a function of position and time. A quantum 
mechanical extension of this equation (with v = 0 but on a lattice) has been investigated 
(Ovchinnikov and Erikhman 1975, Marianer et a1 1982, Madhukar and Post 1977) and 
the results used to explain the conductivity of certain organic conductors. 
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2. Preliminary remarks 

If we consider one particle by itself, the solution to (2) is well known. The position 
dependent force f(x, t )  can be replaced by a force that is only time dependent f ( t ) .  
For short times ( x 2 ) x  t 2  and for long times (x2)K t. But now consider many particles 
initially equally spaced in one dimension all subject to the force f(x, t )  and obeying 
(2). Then we find the following qualitative results. When m = 0 or below some critical 
value that depends on the friction coefficient v and g(x) ,  particles aggregate. That is, 
as t increases, particles come together forming aggregates. These aggregates in turn 
come together forming still larger aggregates. It must be stressed that this occurs in 
the absence of any interaction between the particles. Furthermore, if we denote the 
distance between two particles that are initially very close together by Ax(.t) then 

((Ax(t))2)Kec'  (4) 

where c is a positive constant. At first sight this might seem to contradict the notion 
that the particles aggregate, but in fact the two results are completely consistent as we 
shall later see. When m is above the critical value mentioned above the particles do  
not aggregate but diverge away from each other so that the initial order of the particles 
is lost. 

3. Mathematical analysis 

In order to investigate this problem analytically, we shall use the general method 
discussed by Klyatskin and Tatarskii (1974) for finding the differential equation satisfied 
by the probability distribution of stochastic variables. In their paper Klyatskin and 
Tatarskii discuss many different situations. One of these is the one considered in this 
paper with m = 0. Klyatskin and Tatarskii derived the differential equation for the 
probability distribution of the relative distance between two particles as a function of 
time, P(Ax, t )  satisfied by equation (2) (with m =O). They find 

aP(Ax, t )  - d2(D(Ax)P(Ax, t ) )  - 
a t  aAx2 (5 )  

where D ( x )  = 2(g(O) - g(x) ) .  When Ax( t )  is much less than the correlation length of 
g(x) ,  we can replace D ( x )  by kx2 where the constant k = -2g"(O). Klyatskin and 
Tatarskii use this equation to calculate only the second moment of the probability 
distribution which leads them to (4). However, this result does not contain the essential 
physics of the problem. This can be seen by solving ( 5 )  which leads to 

exp{-[ln(Ax/xo) + 3tI2/4t 1 2 t )  
P(Ax, t )  = 

Xo( 47Tf) 

Now we define the following order parameter 

8 = lim lim J P(x, t )  dx. 
E - 0  1-CD --E 

( 7 )  

This represents the probability that two particles will be found an infinitesimally small 
distance away from each other in the infinite time limit. By substituting (6) into ( 7 )  
it can easily be seen that 0 = 1, which implies that neighbouring particles aggregate. So 



Aggregation-disorder transition 1451 

the complete probability distribution for particle separation given by (6) implies 
aggregation whilst also giving the exponential divergence in ( 4 ) .  This is because the 
major contribution to the average in (4 )  does not come from the particles that aggregate, 
but from those particles between two aggregates. The number of such particles is of 
measure zero in the infinite time limit, but their relative separation diverges exponen- 
tially with time. It is these particles that dominate the average and  lead to (4). 

Now we discuss the relative separation of two particles for finite m. Applying the 
same method used by Klyatskin and Tatarskii one can easily obtain the probability 
distributions of the relative positions and velocities as a function of time, P ( x ,  U, t )  
which is 

a P  auP v auP k a2P -+ x 2 - = o  

a t  ax m au m2 a v 2  ’ 

This contains three parameters, m, v and k so that if we make the rescaling t t tk”3m-2’3 
and u t  ~ k - ’ / ~ m ~ / ~  then 

where a = v( km)-”3 .  Now we consider an  initial probability distribution at time t = 0 
which is symmetric around x = 0, i.e. P ( x ,  U, t = 0) = P (  -x ,  -U, t = 0). This choice does 
not alter the asymptotic behaviour of the particles but is convenient as we only need 
consider P ( x ,  U, t )  for x > 0. Then we make the substitutions U = a / x  and y = I n ( x )  
which gives the equation for P ( y ,  U, t )  

Now we define the two-sided Laplace transform with respect to U and y of P ( y ,  U, t ) :  

p (  k, A ,  t )  = 5‘ ek?’ e”’ P ( y ,  U, 0 dy  d u  ( 1 1 )  
--3c 

which gives 

a p  a2Ap d p + ( a A  - k )  - + y - A 2 p  = O .  
a t  ah a A  

Now consider the equation when A = O  which gives 

We see that an  eigenfunction of ( 12) will have the form exp( - y (  k, a )  t ) f (  A ; k, a ) ,  since 
k and a are parameters in (12). We will now make the assumption that the long-time 
behaviour of p will be dominated by the smallest eigenvalue y (  k, a ) .  Substituting this 
form of p into ( l3) ,  (which should be correct for large times) we obtain 

It is now possible to use (14) to find the criterion for the transition described above. 
We can easily generalise the order parameter 8 defined by ( 7 )  to include the velocity 
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dependent probability distribution P (  x, U, t )  

6 = lim lim P(x, U, t )  du dx. 
-m E -0 1-m 

Using the symmetry of the initial conditions we can rewrite (7) as 
m 

1 - 6 = 2 lim lim P(x, U, t )  dv dx 
-a: E - o  1-30 

= 2 lim lim Ism lm P ( y ,  U, t )  eZY du dy 
-U 5--m 1-m 

s 2 lim lim e(y-s)GP(y, U, r )  du dy 
i---oc f - U  J - x  J --oo 

where 6 can be any constant greater than 0. So if p ( 2 +  6,0, t )  goes to 0 as t tends to 
infinity, then (16) implies that 6 = 1. Using an analogous argument it is easy to show 
that an order parameter representing ‘disorder’ 

is 1 if p ( 2 -  6, 0, t )  goes to 0 as t goes to infinity. 
It is easily seen from (14) that if 

ln(f(A : k,  a ) )  1 
ah A = O  

is positive at and close to k = 2 then y(  k, a )  < 0 for k > 2 and y(  k, a )  > 0 for k < 2 .  
This would imply that the order parameter 6 = 1 and D = 0. Similarly if the quantity 
in (18) is negative then this would imply that 6 = O  and D =  I .  Thus the transition 
between aggregation and disorder, which is a function of the parameter a, should 
occur when the quantity in (18) is zero at k = 2 .  Thus the transition between aggregation 
and disorder is determined by the sign of (18) evaluated at k = 2 .  Equation (18) 
evaluated at k = 2 can be easily expressed in terms of the physical variables U and x 
and is 

4. Results and discussion 

In the above analysis we have assumed that for a given value of a (not at the transition) 
there exists some sufficiently small neighbourhood around k = 2 where ( 18) is always 
positive or always negative. In other words, we are assuming that (19) is not zero. Of 
course at the critical value of a, this may not be the case since (19) is zero at k = 2 .  
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There exists, however, the possibility that the above assumption is wrong and that ( 19) 
is always zero at k = 2.  

Because of the assumptions made in the above analysis, a numerical simulation of 
( 2 )  has been performed to check that the aggregation transition actually occurs. The 
force f(x, t )  was produced by selecting random numbers from a uniform distribution 
between - A  and A. Each random number is associated with a different point on an 
evenly spaced two-dimensional grid (xi, ti). These random numbers define the values 
of the force f (x ,  t,). To obtain the value of f(x, t )  for arbitrary x and t, linear 
interpolation between grid points nearest x and t was performed. To obtain the 
behaviour of many particles subject to the same random potential, ( 2 )  was solved 
numerically for different initial values of x but using the samef(x, t ) .  Figure 1 shows 
some typical results. The horizontal direction indicates time on some arbitrary scale. 
The vertical axis indicates the position of the particles as a function of time. At the 
start of the simulation the particles were equally spaced and given zero initial velocity. 
The above simulation appears to be in agreement with the theoretical predictions. It 
is clear that in figure 1 ( a ) ,  when m = 0.5, v = 1 and A = 1 that the particles aggregate 
with time. However, in figure 1( b ) ,  when m = 1,  v = 0.15 and A = 1 the particle positions 
become disordered. Figure 2 plots the data in figure l (a)  in a different way. The 
vertical axis of each frame represents the positions of the particles as a function of 
their initial positions. Each frame plots the positions at different times. From analysing 
data as a function of the parameters, it appears that the transition occurs approximately 
at a = 0.4. 

It is of interest to point out the close link between this problem and that of iterating 
random functions described in a previous paper (Deutsch 1984). I previously conjec- 
tured that there was a connection and the above results confirm this. I investigated 
the function g,(x) defined as 

where each J;(x) has the form 

f;(x) = x +  & , ( X ) .  

Here E,(x) is a random function with zero mean and E,(x) and E,(x) are statistically 
independent when i Zj. It was found that when the J(x)  were monotonic, for large 
n, g,(x) looked like a series of sharp steps with the average height and width of each 
step proportional to n”’. This result can be interpreted as the aggregation of particles 
in analogy with figure 2. The horizontal axis labels the initial positions of the particles 
and the vertical axis their final positions after n steps. Each iteration J;(x) describes 
the evolution of the particles position to the next time step. 

The crucial parameter controlling the aggregation of these particles under the 
dynamics of ( 1 )  was found to be the probability distribution for the derivatives of 
g,(x) which I label p , ( a ) ,  i.e. the probability that the (dg,(x)/dx) equals a. The point 
x where the derivative is evaluated is irrelevant since the function E,(x)  has statistical 
properties that are translationally invariant. In terms of the particle picture, p , ( a )  has 
a very simple meaning. If  two particles start with a very small separation Ax, then 
their final position will be (Ax dg,(x)/dx). Therefore p , ( a )  is the probability that two 
particles will have a separation a h x  after n steps. When m = 0 in ( 2 )  P(Ax, t )  given 
by ( 6 )  has the identical functional form to p , ( a )  (for n large) when the f;(x) are 
monotonic. 
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Figure 1. The position of 37 particles in a random time varying potential as a function of 
time. (a )  The value of the parameters m = 0.5, A = I and U = I ,  is such that the particles 
aggregate. ( b )  The value of the parameters m = 1 ,  A = 1, U = 0.15 is such that the particles 
do not aggregate. 
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Figure 2. The position of 37 particles as a function of their initial positions for the same 
parameters as in figure I (a) .  Every frame is in time steps of 30. 

When thef;(x) are not monotonic, it was rigorously shown that there is a transition 
from aggregation ( 6  = I ,  D = 0) to disorder (6  = 0, D = I ) ,  that occurs as the degree of 
non-monoticity (i.e. the width of p , ( a ) )  is varied. Here we find a strikingly similar 
transition when we vary m, Y and k. Thus the work in this paper has supported the 
conjecture that the long-time behavior of these two problems are identical. 

There are other problems where there exists a connection between iterated 
maps and solutions to differential equations. For example, if we consider ( 2 )  in the 
case where f ( x ,  t )  is not random but equal to a sin t - bx3 + cx (such as the nonlinear 
Duffing oscillator), then by varying the friction coefficient U, a sequence of period 
doublings is observed which ultimately give rise to chaos beyond a critical value of v. 
This equation has been shown numerically (Huberman and Crutchfield 1979) to be in 
the same universality class as the iterated mapf(x) = rx( 1 - x). The connection between 
( 2 )  and (19) in this paper is somewhat different for two reasons. First we are interested 
in the behaviour of a large number of particles simultaneously, as one particle by itself 
shows no interesting features. In the case of the logistic map and the Duffing oscillator, 
interesting features are observed by considering the trajectory of one point. Second, 
the equations of motion in this paper are stochastic. In the Duffing oscillator, chaotic 
behaviour is observed but the equations of motion are deterministic. 

I am currently investigating the properties of (2) in higher dimensions. 
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